Depth and depth-based classification with R-package ddalpha

Oleksii Pokotylo*, Pavlo Mozharovskyi**, Rainer Dyckerhoff*, Stanislav Nagy***
*University of Cologne
** CREST, Ensai, Université Bretagne Loire
*** Charles University in Prague

Septièmes rencontres R
Rennes, 6 juillet 2018

Contents

Data depth

Depth-based classification

The R-package ddalpha

Summary

Contents

Data depth

Depth-based classification

The R-package ddalpha

Summary

Data depth

Babies with low birth weight

Data depth

Babies with low birth weight

Data depth

A data depth measures, how "close" a given point is located to the "center" of a distribution. For $\boldsymbol{x} \in \mathbb{R}^{d}$ and a d-variate random vector X distributed as $P \in \mathcal{P}$, a data depth is a function

$$
D: \mathbb{R}^{d} \times \mathcal{P} \rightarrow[0,1],(x, P) \mapsto D(x \mid P)
$$

that is affine invariant, vanishing at infinity, decreasing from deepest point, quasiconcave (upper semicontinuous) in \mathbf{x}.

John W. Tukey (1975) - "Mathematics and the picturing of data"

Tukey depth of $\boldsymbol{x} \in \mathbb{R}^{d}$ w.r.t. a d-variate random vector X distributed as P is defined as the smallest probability mass of a closed halfspace containing \mathbf{x} :

$$
D^{\text {Tukey }}(\boldsymbol{x} \mid X)=\inf \{P(H): H \text { is a closed halfspace, } \boldsymbol{x} \in H\} .
$$

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

114 / 161

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

Tukey depth

Babies with low birth weight

3/161

Tukey depth

Applications of data depth:

- Multivariate data analysis (Liu, Parelius, Singh '99);
- Statistical quality control (Liu, Singh '93);
- Clustering (Jornsten '04; Jeong, Cai, Sullivan, Wang '16);
- Tests for multivariate location, scale, symmetry (Liu '92;

Dyckerhoff '02; Dyckerhoff, Ley, Paindaveine '15);

- Outlier detection (Hubert, Rousseeuw, Segaert '15);
- Multivariate risk measurement (Cascos, Mochalov '07);
- Robust linear programming (Bazovkin, Mosler '15);
- Missing data imputation (Mozharovskyi, Josse, Husson '17);
- etc...
- Supervised classification (Ghosh, Chaudhuri '05; Mosler, Hoberg '06; Vencalek '11; Li, Cuesta-Albertos, Liu '12; Lange, Mosler, Mozharovskyi '14; Paindaveine, Van Bever '15; Mosler, Mozharovskyi '15, Pokotylo, Mosler '16, ...);

Contents

Data depth

Depth-based classification

The R-package ddalpha

Supervised classification

- Random pair $(X, Y): X$ in \mathbf{R}^{d}, Y binary.
- X has conditional distribution P_{0} given $Y=0$ resp. P_{1} given $Y=1 ; \pi_{0}=P(Y=0), \pi_{1}=P(Y=1)$.
- Given a training sample drawn from P_{0} and P_{1}, $X_{0}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ and $X_{1}=\left\{\mathbf{x}_{m+1}, \ldots, \mathbf{x}_{m+n}\right\}$,
- construct a classification rule $\boldsymbol{r}: \mathbb{R}^{d} \rightarrow\{0,1\}, \mathbf{x} \mapsto \boldsymbol{r}(\mathbf{x})$, keeping the classification error small:

$$
\mathcal{E}(\boldsymbol{r})=\pi_{0} P_{0}(\boldsymbol{r}(X) \neq 0)+\pi_{1} P_{1}(\boldsymbol{r}(X) \neq 1)
$$

- Bayes classifier:

$$
\boldsymbol{r}(\mathbf{x})=\max _{i \in\{0,1\}} \pi_{i} f_{i}(\mathbf{x})
$$

$D D$-plot

Given: $X_{0}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ from P_{0} and $X_{1}=\left\{\mathbf{x}_{m+1}, \ldots, \mathbf{x}_{m+n}\right\}$ from P_{1}, consider the $D D$-plot (Li, Cuesta-Albertos, Liu, 2012),

$$
Z=\left\{\mathbf{z}_{i} \mid \mathbf{z}_{i}=\left(D\left(\mathbf{x}_{i} \mid X_{0}\right), \quad D\left(\mathbf{x}_{i} \mid X_{1}\right)\right), \quad i=1, \ldots, m+n\right\}
$$

$D D$-plot

Given: $X_{0}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ from P_{0} and $X_{1}=\left\{\mathbf{x}_{m+1}, \ldots, \mathbf{x}_{m+n}\right\}$ from P_{1}, consider the $D D$-plot (Li, Cuesta-Albertos, Liu, 2012),

$$
Z=\left\{\mathbf{z}_{i} \mid \mathbf{z}_{i}=\left(D\left(\mathbf{x}_{i} \mid X_{0}\right), \quad D\left(\mathbf{x}_{i} \mid X_{1}\right)\right), \quad i=1, \ldots, m+n\right\}
$$

$D D$-plot

Given: $X_{0}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ from P_{0} and $X_{1}=\left\{\mathbf{x}_{m+1}, \ldots, \mathbf{x}_{m+n}\right\}$ from P_{1}, consider the $D D$-plot (Li, Cuesta-Albertos, Liu, 2012),

$$
Z=\left\{\mathbf{z}_{i} \mid \mathbf{z}_{i}=\left(D\left(\mathbf{x}_{i} \mid X_{0}\right), \quad D\left(\mathbf{x}_{i} \mid X_{1}\right)\right), \quad i=1, \ldots, m+n\right\}
$$

Pima Indians Diabetes (Subset: $m+n=200, d=7$)

Pima Indians Diabetes: $D D$-Plot

$D D \alpha$-classifier

Extend $D D$-plot using 2nd order polynomial and get 5 features.

In this case $Z=\left\{\mathbf{z}_{i} \mid \mathbf{z}_{i}=\left(D\left(\mathbf{x}_{i} \mid X_{0}\right), \quad D\left(\mathbf{x}_{i} \mid X_{1}\right)\right.\right.$,
$\left.\left.D\left(\mathbf{x}_{i} \mid X_{0}\right) \cdot D\left(\mathbf{x}_{i} \mid X_{1}\right), \quad D^{2}\left(\mathbf{x}_{i} \mid X_{0}\right), \quad D^{2}\left(\mathbf{x}_{i} \mid X_{1}\right)\right), \quad i=1, \ldots, m+n\right\}$.

Object number	Extended properties				
	$D_{X_{0}}\left(\mathbf{x}_{i}\right)$	$D_{X_{1}}\left(\mathbf{x}_{i}\right)$	$D_{X_{0}}\left(\mathbf{x}_{i}\right) \cdot D_{X_{1}}\left(\mathbf{x}_{i}\right)$	$D_{X_{0}}^{2}\left(\mathbf{x}_{i}\right)$	$D_{X_{1}}^{2}\left(\mathbf{x}_{i}\right)$
1	$D_{X_{0}}\left(\mathbf{x}_{1}\right)$	$D_{X_{1}}\left(\mathbf{x}_{1}\right)$	$D_{X_{0}}\left(\mathbf{x}_{1}\right) \cdot D_{X_{1}}\left(\mathbf{x}_{1}\right)$	$D_{X_{0}}^{2}\left(\mathbf{x}_{1}\right)$	$D_{X_{1}}^{2}\left(\mathbf{x}_{1}\right)$
2	$D_{X_{0}}\left(\mathbf{x}_{2}\right)$	$D_{X_{1}}\left(\mathbf{x}_{2}\right)$	$D_{X_{0}}\left(\mathbf{x}_{2}\right) \cdot D_{X_{1}}\left(\mathbf{x}_{2}\right)$	$D_{X_{0}}^{2}\left(\mathbf{x}_{2}\right)$	$D_{X_{1}}^{2}\left(\mathbf{x}_{2}\right)$
\ldots					
i	$D_{X_{0}}\left(\mathbf{x}_{i}\right)$	$D_{X_{1}}\left(\mathbf{x}_{i}\right)$	$D_{X_{0}}\left(\mathbf{x}_{i}\right) \cdot D_{X_{1}}\left(\mathbf{x}_{i}\right)$	$D_{X_{0}}^{2}\left(\mathbf{x}_{i}\right)$	$D_{X_{1}}^{2}\left(\mathbf{x}_{i}\right)$
\ldots					
$m+n$	$D_{X_{0}}\left(\mathbf{x}_{m+n}\right)$	$D_{X_{1}}\left(\mathbf{x}_{m+n}\right)$	$D_{X_{0}\left(\mathbf{x}_{m+n}\right) \cdot D_{X_{1}}\left(\mathbf{x}_{m+n}\right)} D_{X_{0}}^{2}\left(\mathbf{x}_{m+n}\right)$	$D_{X_{1}}^{2}\left(\mathbf{x}_{m+n}\right)$	

$D D \alpha$-classifier

Contents

Data depth

Depth-based classification

The R-package ddalpha

Summary

Depth-based classification

> Data depth + Classification
> $=$
affine-invariante robust non-parametric distribution-free classification

Problems:

- lack of implementations;
- different languages and interfaces;
- different requirements to the format of the input data;
- no implementations of depths and $D D$-classifiers under one roof.

We summarize the work of many researchers.

R-package ddalpha is a structured solution

Implemented data depths

Implemented data depths

Simplicial depth

Simplicial volume

Implemented data depths: computation time

Implemented data depths: algorithms

Depth	Exact	Approximate
Mahalanobis	\checkmark	\checkmark robust(mcd)
projection		\checkmark pp $+\checkmark$ Nelder-Mead
spatial $\left(L_{1}\right)$	\checkmark	\checkmark robust(mcd)
halfspace	$\checkmark \checkmark \checkmark$	\checkmark pp
zonoid	\checkmark	
simplicial	\checkmark	\checkmark part of simplices
simplicial volume	\checkmark	\checkmark part of simplices

Contents

Data depth

Depth-based classification

The R-package ddalpha

Summary

Summary of the R-package ddalpha

Package 'ddalpha'

June 23, 2018
Type Package
Title Depth-Based Classification and Calculation of Data Depth

Version 1.3.4

Date 2018-06-22
SystemRequirements $\mathrm{C}++11$
Depends R $(>=2.10)$, stats, utils, graphics, grDevices, MASS, class, robustbase, sfsmisc, geometry

Imports Rcpp ($>=0.11 .0$)

LinkingTo BH, Rcpp

Description Contains procedures for depth-based supervised learning, which are entirely nonparametric, in particular the DDalpha-
procedure (Lange, Mosler and Mozharovskyi, 2014 <doi:10.1007/s00362-012-0488-
$4>$). The training data sample is transformed by a statistical depth function to a compact low-
dimensional space, where the final classification is done. It also offers an extension to func-
tional data and routines for calculating certain notions of statistical depth functions. 50 multivariate and 5 functional classification problems are included.

License GPL-2

NeedsCompilation yes

Author Oleksii Pokotylo [aut, cre],
Pavlo Mozharovskyi [aut],
Rainer Dyckerhoff [aut],
Rainer Dyckerhoff [aut],
Stanislav Nagy [aut]
Maintainer Oleksii Pokotylo <alexey. pokotylo@gmail com>

Repository CRAN

Date/Publication 2018-06-23 16:08:17 UTC

- exact and approximate computation of 7 data depths
- depth-based supervised classification
- supports multivariate and functional data
- outsiders treatment procedures
- built in procedures for statistical inference
- data sets and data generators
- visualization procedures

Thank you for your attention! Questions?

- Pokotylo, O., Mozharovskyi, P., Dyckerhoff, R. (2017).

Depth and depth-based classification with R-package ddalpha. Journal of Statistical Software, in press.

- Nagy, S., Gijbels, I., Hlubinka, D. (2017).

Depth-based recognition of shape outlying functions.
Journal of Computational and Graphical Statistics, 26, 883-893.

- Dyckerhoff R., Mosler K., Koshevoy G. (1996).

Zonoid data depth: Theory and computation.
In A Prat (ed.), COMPSTAT '96 - Proceedings in Computational Statistics, pp. 235-240. Springer.

- Lange T., Mosler K., Mozharovskyi P. (2014).

Fast nonparametric classification based on data depth.
Statistical Papers, 55, 49-69.

- Dyckerhoff R., Mozharovskyi P. (2016).

Exact computation of the halfspace depth.
Computational Statistics and Data Analysis, 98, 19-30.

- Pokotylo O., Mosler K. (2016).

Classification with the pot-pot plot.
Statistical Papers, to appear.

