

JOHANNES KEPLER UNIVERSITY LINZ

Tools and methods for
 model-based clustering in \mathbf{R}

Bettina Grün

Rennes 2018

Cluster analysis

- The task of grouping a set of objects such that
- Objects in the same group are as similar as possible and
- Objects in different groups are as dissimilar as possible.
- The aim is to determine a partition of the given set of objects, e.g., to determine which objects belong to the same group and which to different groups.
- Statistical methods:
- Heuristic methods: hierarchical clustering, partitioning methods (e.g., k-means).
- Model-based methods: finite mixture models.

Specifying the cluster problem

- The cluster problem is in general perceived as ill defined.
- Different notions of what defines a cluster exist:
- Compactness.
- Density-based levels.
- Connectedness.
- Functional similarity.
- Several cluster solutions might exist for a given data set depending on which notion is used.
- The application context is important to define which clusters should be targeted and to assess the usefulness of a clustering solution.

Specifying the cluster problem / 2

Model-based clustering methods

- Model-based clustering embeds the clustering problem in a probabilistic framework.
- This implies:
- Statistical inference tools can be used.
- Different cluster distributions can be used depending on the cluster notion.
- More explicit specification of what defines a cluster required than for heuristic methods.

Finite mixture models

- Generative model for observations $\left(\boldsymbol{y}_{i}, \boldsymbol{x}_{i}\right), i=1, \ldots, n$:
(1) Draw a cluster membership indicator S_{i} from a multinomial distribution with parameters $\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{K}\right)$.
(2) Draw \boldsymbol{y}_{i} given \boldsymbol{x}_{i} and S_{i} from the cluster distribution:

$$
\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} \sim f_{s_{i}}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}\right)
$$

- The distribution of $\left(\boldsymbol{y}_{i}, \boldsymbol{x}_{i}\right)$ is then given by

$$
\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} \sim \sum_{k=1}^{K} \eta_{k} f_{k}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}\right)
$$

where

- $\eta_{k} \geq 0$ for all k and $\sum_{k=1}^{K} \eta_{k}=1$.
- $f_{k}()$ represents the cluster distribution.

Finite mixture models /2

Methods differ with respect to:

- Clustering kernel:
- Specification of cluster distributions.
- Use of additional variables \boldsymbol{x}_{i}, e.g., for regression.
- Estimation framework:
- Maximum likelihood estimation.
- Bayesian estimation.

Finite mixture models $/ 3$

- Cluster membership indicators can be inferred using the a-posteriori probabilities:

$$
\mathbb{P}\left(S_{i}=k \mid \boldsymbol{y}_{i}, \boldsymbol{x}_{i}\right) \propto \eta_{k} f_{k}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}\right)
$$

- A hard assignment can be obtained by
- Assigning to the cluster where this probability is maximum.
- Drawing from this probability distribution.

Finite mixture models / 4

Estimation of finite mixtures with fixed K

- Maximum likelihood estimation:
- EM algorithm.
- General purpose optimizers.
- Hybrid approaches.
- Bayesian estimation:
- MCMC sampling with data augmentation by adding S_{i}, $i=1, \ldots, n$.
- General purpose Gibbs samplers can be used, e.g., JAGS available in R through package rjags (Plummer, 2016).

EM algorithm

- Standard maximum likelihood estimation method in a missing data context.
- Guaranteed to converge for bounded likelihoods.
- Only convergence to a local optimum.
- In general slow convergence behavior.
- Consists of E- and M-step:
- E-step requires determining the a-posteriori probabilities.
- M-step requires weighted maximum likelihood estimation of the cluster distributions.

MCMC sampling

- Determination of the a-posteriori probabilities required to draw S_{i}, $i=1, \ldots, n$ from a multinomial distribution.
- Conditional on $S_{i}, i=1, \ldots, n$ drawing from the posterior of the cluster-specific parameters is the same as if the cluster-specific distribution is used for the complete data set.
- Often poor mixing observed.
- For symmetric priors the posterior is also symmetric and thus multimodal.

Determining the number of clusters

- No generally accepted solution available.
- Suggested methods include:
- Information criteria: AIC, BIC, ICL.
- Likelihood ratio test with distribution under the null determined using sampling methods.
- Marginal likelihoods in Bayesian estimation.

Clustering kernel

- Components corresponding to clusters: In general using parametric distributions for the components and thus also for the clusters.
- Multivariate continuous data.
- Multivariate categorical data.
- Multivariate mixed data.
- Multivariate data with regression structure.
- Combining components to clusters:
I.e., the cluster distributions are mixture distributions.
- Two-step procedures.
- Simultaneous estimation using constraints or informative priors.

In the following these variants are investigated for maximum likelihood estimation.

Multivariate continuous data

- The standard model is a mixture of multivariate Gaussians.
- The model-based clustering model is given by

$$
\boldsymbol{y}_{i} \sim \sum_{k=1}^{K} \eta_{k} \phi\left(\boldsymbol{y}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- For K clusters and d-dimensional observations \boldsymbol{y}_{i} the number of estimated parameters corresponds to

$$
K \cdot(d+d(d+1) / 2)+K-1 .
$$

Multivariate continuous data $/ 2$

- Parsimonity is achieved based on the decomposition of the variance-covariance matrix into
- Volume λ.
- Orientation D.
- Shape A.
given by

$$
\Sigma_{k}=\lambda_{k} D_{k} A_{k} D_{k}^{\top}
$$

- 14 different models emerge by imposing different constraints on the variance-covariance matrices within or across clusters.
- Available packages in R, e.g.:
- mclust (Scrucca et al., 2016),
- mixture (Browne et al., 2018),
- Rmixmod (Lebret et al., 2015).

Multivariate continuous data $/ 3$

Multivariate continuous data $/ 4$

- Alternative approaches to achieve parsimonity are mixtures of factor analyzers.
- E.g., package pgmm (McNicholas et al., 2018) in R.
- If the cluster shapes are not symmetric and light tailed, alternative cluster kernels are:
- t-distributions (e.g., package teigen; Andrews et al. 2018).
- Skewed and / or heavy tailed distributions: e.g.,
- EMMIXcskew (Lee and McLachlan, 2018),
- MixSAL (Franczak et al., 2018),
- mixsmsn (Prates et al., 2013).

Multivariate categorical data

- Often also referred to as latent class analysis.
- Clusters induce a dependency between variables, while variables are independent within clusters.
\Rightarrow Local independency assumption.
- The model-based clustering model is given by

$$
\boldsymbol{y}_{i} \sim \sum_{k=1}^{K} \eta_{k}\left[\prod_{j=1}^{d} \operatorname{Multinomial}\left(y_{i j} \mid \pi_{k}^{j}\right)\right]
$$

for d-dimensional observations.

- Available packages in R: e.g.,
- poLCA (Linzer and Lewis, 2011)
- Rmixmod (Lebret et al., 2015)

Multivariate data with regression structure

- Often also referred to as clusterwise regression.
- The model-based clustering model is given by

$$
\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} \sim \sum_{k=1}^{K} \eta_{k} f\left(\boldsymbol{y}_{i} \mid \boldsymbol{\mu}_{k}\left(\boldsymbol{x}_{i}\right), \phi_{k}\right)
$$

- Different regression models possible:
- Generalized linear models.
- Generalized linear mixed-effects models.
- Available packages in R: e.g.,
- flexmix (Leisch, 2004; Grün and Leisch, 2008)
- mixtools (Benaglia et al., 2009)

Multivariate data with regression structure / 2

Combining components to clusters

- Two-step procedures:
(1) Fit a mixture model as semi-parametric tool for density estimation.
(2) Combine components of the mixture model to form clusters based on some criterion.

Available packages in R, e.g.:

- mclust uses entropy as criterion (Baudry et al., 2010).
- fpc (Hennig, 2018) provides several variants as proposed in Hennig (2010).
- Simultaneous estimation using informative priors in Bayesian estimation can be used in combination with standard estimation methods.

Post-processing tools

- Inference on partitions.
- Inference on cluster-specific parameters:

In particular for Bayesian estimation the label switching problem needs to be resolved.

- Assigning new observations to clusters:

Cluster predictions possible.

- Assessing cluster quality.

Assessing cluster quality

- Agreement measures between cluster assignments and true classes available as in a supervised setting:
- Label-invariant measures:
- Rand index (corrected for agreement by chance).
- Jaccard index.
- Purity.
- Label-specific measures:
- Misclassification rate.
- Available packages in R:
- Package clue (Hornik, 2005) provides general infrastructure to assess cluster solutions:
Function cl_agreement provides several methods to assess cluster agreement.

Comparing packages

- Use a classification data set with 3 known classes and three continuous predictors.
- Compare the three packages for fitting mixtures of Gaussians with variance-covariance matrix decomposition.
- Fit all models for $K=1, \ldots, 9$ and select the best according to the BIC.
- Extract the cluster assignments and assess cluster quality in comparison to the true classification.

Comparing packages: data

> data("diabetes", package = "mclust")
> library("clue")
> class <- as.cl_partition(diabetes\$class)
$>\mathrm{X}<-$ diabetes[, -1]
> pairs(X, col = diabetes\$class, pch = 19)

Comparing packages: data / 2

Comparing packages: mclust

```
> library("mclust")
> mclust.sol <- Mclust(X, G = 1:9)
> class(mclust.sol)
[1] "Mclust"
> mclust.sol[c("G", "modelName")]
$G
[1] 3
$modelName
[1] "VVV"
> c(logLik = logLik(mclust.sol), BIC = BIC(mclust.sol))
    logLik BIC
-2303.493 4751.311
```


Comparing packages: mclust / 2

```
Standard visualization:
> plot(mclust.sol, "BIC")
> plot(mclust.sol, "classification")
> plot(mclust.sol, "uncertainty")
> plot(mclust.sol, "density")
```


Comparing packages: mclust / 3

Comparing packages: mclust /4

```
Class agreement:
> cl_agreement(as.cl_hard_partition(mclust.sol), class,
+ method = "crand")
Cross-agreements using corrected Rand index:
    [,1]
[1,] 0.6640181
```


Comparing packages: mixture

```
> set.seed(1234)
> library("mixture")
> mixture.sol <- gpcm(as.matrix(X), G = 1:9)
> class(mixture.sol)
[1] "gpcm"
> (best <- mixture.sol$bicModel[c("G", "covtype")])
$G
[1] 3
$covtype
[1] "VVV"
> mixture.sol$BIC[best$G, best$covtype, c("loglik", "BIC")]
    loglik BIC
-2303.492 4751.309
```


Comparing packages: mixture / 2

Standard visualization:
> plot(mixture.sol)

Comparing packages: mixture / 3

```
Class agreement:
> mixture.preds <- mixture.sol\$map
> cl_agreement(as.cl_partition(mixture.preds), class,
+ method = "crand")
Cross-agreements using corrected Rand index:
    [,1]
[1,] 0.6640181
```


Comparing packages: Rmixmod

```
> library("Rmixmod")
> mixmod.sol.1 <- mixmodCluster(
+ data = X, nbCluster = 1,
+ models = mixmodGaussianModel(listModels =
+ c("Gaussian_pk_Lk_Ck", "Gaussian_pk_Lk_Bk",
+ "Gaussian_pk_Lk_I")))
> mixmod.sol.1["bestResult"]@criterionValue
[1] 5136.446
> mixmod.sol <- mixmodCluster(
+ data = X, nbCluster = 2:9,
+ models = mixmodGaussianModel(equal.proportions = FALSE),
+ strategy = mixmodStrategy(nbTryInInit = 20), seed = 10)
> class(mixmod.sol)
[1] "MixmodCluster"
attr(,"package")
[1] "Rmixmod"
```


Comparing packages: Rmixmod / 2

> mixmod.sol["bestResult"]@nbCluster
[1] 3
> mixmod.sol["bestResult"]@model
[1] "Gaussian_pk_Lk_Ck"
> c(logLik = mixmod.sol["bestResult"]@likelihood,

+ BIC = mixmod.sol["bestResult"]@criterionValue)
logLik BIC
-2303.493 4751.311
Standard visualization:
> plot(mixmod.sol)

Comparing packages: Rmixmod $/ 3$

Comparing packages: Rmixmod / 4

Some coding also allows to obtain the BIC values for all fitted models ...

Comparing packages: Rmixmod / 5

```
Class agreement:
> mixmod.preds <- mixmod.sol["bestResult"]@partition
> cl_agreement(as.cl_partition(mixmod.preds), class,
+ method = "crand")
```

Cross-agreements using corrected Rand index:
[,1]
[1,] 0.6640181

Comparing packages

- All packages implement the EM algorithm and allow to specify the number of clusters and which variance-covariance structures should be fitted.
- By default all packages use the BIC to select the best fitting model.
- For this simple example all packages arrive at the same solution.
- However, the packages use different initialization strategies.
- The return objects differ as well as the associated methods available to inspect the obtained solutions.
- Class assignments can be extracted and used in combination with package clue to assess cluster quality.

Summary

- Model-based clustering is a versatile method for clustering.
- Different variants exist depending on
- Clustering kernel.
- Estimation methods.
- A large number of R packages are available where each covers a certain set of mixture models.
- The same functionality is often covered by several packages.
- Packages vary in the range of models covered and what additional functionality is provided for fitted models.
- Common standards and infrastructure are mostly lacking.
- For more information see the CRAN Task View: Cluster Analysis \& Finite Mixture Models:
https://CRAN.R-project.org/view=Cluster

References

J. L. Andrews, J. R. Wickins, N. M. Boers, and P. D. McNicholas. teigen: An R package for model-based clustering and classification via the multivariate t distribution. Journal of Statistical Software, 83(7):1-32, 2018. doi: 10.18637/jss.v083.i07.
J.-P. Baudry, A. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining mixture components for clustering. Journal of Computational and Graphical Statistics, 2(19):332-353, 2010. doi: 10.1198/jcgs.2010.08111.
T. Benaglia, D. Chauveau, D. R. Hunter, and D. Young. mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29, 2009. doi: 10.18637/jss.v032.i06.
R. P. Browne, A. ElSherbiny, and P. D. McNicholas. Mixture: Mixture Models for Clustering and Classification, 2018. URL https://CRAN.R-project.org/package=mixture. R package version 1.5 .

References / 2

B. C. Franczak, R. P. Browne, P. D. McNicholas, and K. L. Burak. MixSAL: Mixtures of Multivariate Shifted Asymmetric Laplace (SAL) Distributions, 2018. URL https://CRAN.R-project.org/package=MixSAL. R package version 1.0.
B. Grün and F. Leisch. FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. Journal of Statistical Software, 28(4):1-35, 2008. doi: 10.18637/jss.v028.i04.
C. Hennig. Methods for merging Gaussian mixture components. Advances in Data Analysis and Classification, 4(1):3-34, 2010. doi: 10.1007/s11634-010-0058-3.
C. Hennig. fpc: Flexible Procedures for Clustering, 2018. URL https://CRAN.R-project.org/package=fpc. R package version 2.1-11.
K. Hornik. A CLUE for CLUster Ensembles. Journal of Statistical Software, 14(12):1-25, 2005. doi: 10.18637/jss.v014.i12.

References / 3

R. Lebret, S. lovleff, F. Langrognet, C. Biernacki, G. Celeux, and G. Govaert. Rmixmod: The R package of the model-based unsupervised, supervised, and semi-supervised classification Mixmod library. Journal of Statistical Software, 67(6):1-29, 2015. doi: 10.18637/jss.v067.i06.
S. Lee and G. McLachlan. EMMIXcskew: An R package for the fitting of a mixture of canonical fundamental skew t-distributions. Journal of Statistical Software, 83(3):1-32, 2018. doi: 10.18637/jss.v083.i03.
F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R. Journal of Statistical Software, 11(8):1-18, 2004. doi: 10.18637/jss.v011.i08.
D. A. Linzer and J. B. Lewis. poLCA: An R package for polytomous variable latent class analysis. Journal of Statistical Software, 42(10):1-29, 2011. doi: 10.18637/jss.v042.i10.
P. D. McNicholas, A. ElSherbiny, A. F. McDaid, and T. B. Murphy. pgmm: Parsimonious Gaussian Mixture Models, 2018. URL https://CRAN.R-project.org/package=pgmm. R package version 1.2.2.

References / 4

M. Plummer. rjags: Bayesian Graphical Models Using MCMC, 2016. URL https://CRAN.R-project.org/package=rjags. R package version 4-6.
M. O. Prates, C. R. B. Cabral, and V. H. Lachos. mixsmsn: Fitting finite mixture of scale mixture of skew-normal distributions. Journal of Statistical Software, 54(12):1-20, 2013. doi: 10.18637/jss.v054.i12.
L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1):205-233, 2016. doi: 10.21236/ada459792.

