The \texttt{bigstatsr} package: memory- and computation-efficient tools for big matrices stored on disk

Florian Privé (@privefl)

Rencontres R 2018

Slides: https://privefl.github.io/RR18/bigstatsr.html
I'm a PhD Student (2016-2019) in **Predictive Human Genetics** in Grenoble.

Disease \sim DNA mutations + ...
Analyze very large genotype matrices

- previously: 15K x 280K, celiac disease (~30GB)
- currently: 500K x 500K, UK Biobank (~2TB)

But I still want to use R...
The solution I found

Format FBM is very similar to format filebacked.big.matrix from package \{bigmemory\} (details in this vignette).
Simple accessors
Similar accessor as R matrices

```r
X <- FBM(2, 5, init = 1:10, backingfile = "test")

X$backingfile

## [1] "/home/privef/Bureau/RR18/test.bk"

X[, 1]  ## ok

## [1] 1 2

X[1, ]  ## bad

## [1] 1 3 5 7 9

X[]  ## super bad

## [1,]  1  3  5  7  9
## [2,]  2  4  6  8 10
```
Similar accessor as R matrices

colSums(X[]) ## super bad

[1] 3 7 11 15 19

CAUTION
THIS MACHINE HAS NO BRAIN
USE YOUR OWN
Split-(par)Apply-Combine Strategy

Apply standard R functions to big matrices (in parallel)

Implemented in `big_apply()`.
Similar accessor as Rcpp matrices

```cpp
// [[Rcpp::depends(BH, bigstatsr)]]
#include <bigstatsr/BMAcc.h>

// [[Rcpp::export]]
NumericVector big_colsums(Environment BM) {

    XPtr<FBM> xpBM = BM["address"];    
    BMAcc<double> macc(xpBM);

    size_t n = macc.nrow();
    size_t m = macc.ncol();

    NumericVector res(m);

    for (size_t j = 0; j < m; j++)
        for (size_t i = 0; i < n; i++)
            res[j] += macc(i, j);

    return res;
}
```
Some examples from my work
Partial Singular Value Decomposition

$15K \times 100K -- 10$ first PCs -- 6 cores -- 1 min (vs $2h$ in base R)

Implemented in `big_randomSVD()`, powered by R packages `{RSpectra}` and `{Rcpp}`.
Multiple association testing

Which DNA mutations are associated with one disease?
Sparse linear models

Predicting complex diseases via penalized logistic regression

$15K \times 280K -- 6 \text{ cores} -- 2 \text{ min}$
Conclusion
I'm able to run algorithms on 100GB of data in R on my computer.
Advantages of using FBM objects

- you can apply algorithms on **data larger than your RAM**,
- you can easily **parallelize** your algorithms because the data on disk is shared,
- you write **more efficient algorithms** (you do less copies and think more about what you're doing),
- you can use **different types of data**, for example, in my field, I’m storing my data with only 1 byte per element (rather than 8 bytes for a standard R matrix). See the documentation of the FBM class for details.
R Packages

Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr

Florian Privé, Hugues Aschard, Andrey Ziyatdinov, Michael G B Blum

Bioinformatics, bty185, https://doi.org/10.1093/bioinformatics/bty185

- `{bigstatsr}`: to be used by any field of research
- `{bigsnp}`: algorithms specific to my field of research
Contributors are welcomed!
Make sure to grab an hex sticker
Thanks!

Presentation: https://privefl.github.io/RR18/bigstatsr.html

Package's website: https://privefl.github.io/bigstatsr/

DOI: 10.1093/bioinformatics/bty185

@privefl @privefl F. Privé

Slides created via the R package xaringan.