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Abstract

Logistic regression is a reference method in supervised learning but as surprising as it
may seem, there are very few solutions for performing a logistic regression and selecting
variables with missing data. We suggest a stochastic approximated version of EM algo-
rithm based on Metropolis-Hasting sampling, in order to do statistical inference for the
logistic regression model with incomplete data. We propose a complete approach including
the estimation of parameters and their variance to derive confidence interval, as well as a
model selection procedure and how to handle missing values in testing set. The method
is computationally efficient, and its good coverage and properties of variable selection are
demonstrated through a simulation study. We illustrate the method on a register from
Paris’s hospitals on polytraumatized patients to predict the occurrence of an hemorrhagic
shock, a leading cause of early preventable death in severe trauma. The aim is to consoli-
date the existing Red Flag procedure, a binary alert identifying patients with high risk of
severe hemorrhage. The methodology is implemented in an R package misaem.

1 Introduction
Missing data exist in almost all areas of empirical research. There might be various reasons for
missing data to occur, including the survey non-response, unavailability of measurements and
loss of data.
One popular approach to handle missing values, consists of modifying the estimation process
so that it can be applied on incomplete data. For instance, one can use the EM algorithm
[Dempster et al., 1977] to obtain the maximum likelihood estimate (MLE) despite missing
values and a supplemented EM algorithm (SEM) [Meng and Rubin, 1991] or Louis’ formula
[Louis, 1982] for their variance. This strategy is valid under a missing at random (MAR) mech-
anism [Rubin, 1976, Little and Rubin, 2002], in which missingness of the data is independent of
the missing values given the observed data. Even though this approach is perfectly well-fitted
towards a specific inference problem with missing values, it turns out that, as surprising as it
sounds, there aren’t many solutions nor implementation available even for simple models such
as logistic regression model which is the focus of this paper.
This could be explained because it is often the case that, the expectation step, in the EM
algorithm for logistic regression, involves unfeasible computations. One solution suggested in



[Claeskens and Consentino, 2008, Gilks and Wild, 1992, Ibrahim et al., 1999, Ibrahim et al., 2005]
in the framework of generalized linear models, is to use a Monte Carlo EM (MCEM) algorithm
[Wei and Tanner, 1990, McLachlan and Krishnan, 2008] replacing the integral by its empirical
sum with Monte Carlo sampling. Then, they also estimated the variance using a Monte Carlo
version of Louis’ formula. For sampling, they used Gibbs samplers along with an adaptive
rejection sampling scheme. Still, their approach is much computationally expensive and they
considered implementations only for a monotone pattern of missing values, or for missing values
on only 2 variables in a dataset.
In this paper, we develop an alternative to MCEM, a stochastic approximation EM (SAEM)
[Lavielle, 2014] which uses a stochastic approximation procedure to estimate the conditional
expectation of the complete-data likelihood, instead of generating a large number of Monte
Carlo samples. SAEM has an undeniable computational advantage over MCEM. In addi-
tion, it takes great advantage of allowing easy establishment of model selection criterion based
on penalized observed likelihood. This latter characteristic is very useful in practice as only
few methods are available to select a model when there are missing values. For example,
[Claeskens and Consentino, 2008, Consentino and Claeskens, 2011] considered approximation
of AIC while [Jiang et al., 2015] defined a generalized information criteria (GIC) and adaptive
fence (AF) and [Liu et al., 2016] in the framework of imputation with Random Lasso (mirl)
proposed to combine penalized regression techniques with multiple imputation and stability
selection.
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